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Abstract

This paper studies zeros of networked linear systems with time-invariant interconnection topology. While the characterization
of zeros is given for both heterogeneous and homogeneous networks, homogeneous networks are explored in greater detail.
In the current paper, for homogeneous networks with time-invariant interconnection dynamics, it is illustrated how the zeros
of each individual agent’s system description and zeros definable from the interconnection dynamics contribute to generating
zeros of the whole network. We also demonstrate how zeros of networked systems and those of their associated blocked versions
are related.
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1 Introduction

Recent developments of enabling technologies such as
communication systems, cheap computation equipment
and sensor platforms have given great impetus to the
creation of networked systems. Thus, this area has at-
tracted significant attention worldwide and researchers
have studied networked systems from different perspec-
tives (see e.g. [33], [28], [35]). In particular, in view of the
recent chain of events [15], [10] and [30], the issues of se-
curity and cyber threats to the networked systems have
gained growing attention. This paper uses system the-
oretic approaches to deal with problems involved with
the security of networks.

Recent works have shown that control theory can be used
as an effective tool to detect and mitigate the effects of
cyber attacks on the networked systems; see for exam-
ple [25], [6], [17], [1], [34], [36] and the references listed
therein. The authors of [36] have introduced the con-
cept of zero-dynamics attacks and shown how attackers
can use knowledge of networks’ zeros to produce control
commands such that they are not detected as security

? This paper was not presented at any IFAC meeting. Cor-
responding author is Mohsen Zamani.

threats 1 . They have further shown that zeros of net-
works provide valuable information relevant to detecting
cyber attacks. The authors in [36] were more concerned
with mitigating such attacks and did not provide a de-
tailed discussion about zeros of the networked systems.
In addition to this, even though various aspects of the
dynamics of networked systems have been extensively
studied in the literature [29,27,11], to the authors’ best
knowledge, the zeros of networked systems have not been
studied in any detail except in [44]. The current paper
establishes a link between the problem of zero-dynamics
attacks and the analysis of zeros that has been recorded
in [44]. Furthermore, several new results are introduced
in the current paper compared to its preliminary confer-
ence version including the provision of proofs of certain
results which were not part of the conference version.

This paper examines the zeros of networked systems
in more depth. Our focus is on networks of finite-
dimensional linear discrete-time dynamical systems that
arise through static interconnections of a finite number
of such systems. Such models arise naturally in applica-
tions of linear networked systems, e.g. for cyclic pursuit
[24]; shortening flows in image processing [5], or for the

1 This is discussed further in the next section.
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discretization of partial differential equations [4].

Our ultimate goal is to analyze the zeros of networked
systems with periodic, or more generally time-varying
interconnection topology. An important tool for this
analysis is blocking or lifting technique for networks
with time-invariant interconnections. Note that block-
ing of linear time-invariant systems is useful if not
standard in design of controllers for linear periodic sys-
tems as shown by [7] and [23]. The authors of [3] and
[16] have examined zeros of blocked systems obtained
from blocking of time-invariant systems. Their works
have been extended in [43] and [8]. However, these ear-
lier contributions do not take any underlying network
structure into consideration. In this paper, we introduce
some results that provide a first step in that direction.

It is worthwhile noting the blocking technique has been
used in the networked systems literature for both con-
trol and identification purposes. For instance, the au-
thors in [19] have exploited this technique to identify the
system parameters in a networked system via the sub-
space approach. The same set of authors have employed
the blocking technique to study moving horizon estima-
tion problem for networked systems [18]. In [26] the au-
thors have utilized the blocking technique to provide a
sufficient and necessary condition for stability of a class
of networked systems with communication bandwidth
limitation. A similar problem has been addressed in [14]
using the blocking.

The structure of this paper is as follows. First, in Section
2 we introduce state-space and higher order polynomial
system models for time-invariant networks of linear sys-
tems. A central result used is the strict system equiv-
alence between these different system representations.
Moreover, we completely characterize both finite and
infinite zeros of arbitrary heterogeneous networks. For
homogeneous networks of identical SISO systems more
explicit results are provided in Section 3. Homogeneous
networks with a circulant coupling topology are studied
as well. In Section 4, a relation between the transfer func-
tion of the blocked system and the transfer function of
the associated unblocked system is explained. We then
relate the zeros of blocked networked systems to those of
the corresponding unblocked systems, generalizing work
in [43], [8], [42]. Finally, Section 5 provides the conclud-
ing remarks.

2 Problem Statement and Preliminaries

We consider networks of N linear systems, coupled
through constant interconnection parameters. Each
agent is assumed to have the state-space representation
as a linear discrete-time system

xi(t+ 1) = Aixi(t) +Bivi(t)

wi(t) = Cixi(t), i = 1, . . . , N.
(1)

Here, Ai ∈ Rni×ni , Bi ∈ Rni×mi and Ci ∈ Rpi×ni are
the associated system matrices. We assume that each
system is reachable and observable and that the agents
are interconnected by static coupling laws

vi(t) =

N∑
j=1

Lijwj(t) +Riu(t) ∈ Rmi (2)

with Lij ∈ Rmi×pj , Ri ∈ Rmi×m and u(t) ∈ Rm de-
noting an external input applied to the whole network.
Further, we assume that there is a p-dimensional inter-
connected output given by

y(t) =

N∑
i=1

Siwi(t)+Du(t) with Si ∈ Rp×pi , i = 1, . . . , N.

(3)

Define m =
∑N
i=1mi, p =

∑N
i=1 pi, n =

∑N
i=1 ni and

coupling matrices

L= (Lij)ij ∈ Rm×p R =


R1

...

RN

 ∈ Rm×m

S = (S1, . . . , SN ) ∈ Rp×p D ∈ Rp×m

as well as node matrices

A = diag (A1, . . . , AN ), B = diag (B1, . . . , BN )

C = diag (C1, . . . , CN ), x(t) :=


x1(t)

...

xN (t)

 ∈ Rn.
(4)

Then the closed-loop system is

x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t),
(5)

with matrices

A := A+BLC B := BR, C := SC. (6)

One could also start by assuming that each system (1)
is defined in terms of a restricted version of Rosenbrock-
type equations [31] i.e. by systems of higher order differ-
ence equations

Ti(σ)ξi(t) = Ui(σ)vi(t)

wi(t) = Vi(σ)ξi(t).
(7)
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Here σ denotes the shift operator that acts on sequences
of vectors (ξ(t))t as (σξ(t)) = ξ(t + 1). Furthermore,
Ti, Ui, Vi denote polynomial matrices of sizes Ti(z) ∈
R[z]ri×ri , Ui(z) ∈ R[z]ri×mi and Vi(z) ∈ R[z]pi×ri , re-
spectively. We always assume that Ti(z) is nonsingular,
i.e. that detTi(z) is not the zero polynomial. Moreover,
the system (7) is assumed to be strictly proper, i.e. we
assume that the associated transfer function

Gi(z) = Vi(z)Ti(z)
−1Ui(z) (8)

is strictly proper. Following Fuhrmann [12], any strictly
proper system of higher order difference equations has
an associated state-space realization (A,B,C), the so-
called shift realization, such that the polynomial ma-
trices (

zI −A −B
C 0

)
,

(
T (z) −U(z)

V (z) 0

)
(9)

are strict system equivalent [12]. If the first order rep-
resentation (1) is strict system equivalent to the higher
order system (7) then of course the associated transfer
functions coincide, i.e. we have

Ci(zI −Ai)−1Bi = Vi(z)Ti(z)
−1Ui(z). (10)

Throughout this paper we assume that the first order
and higher order representations i.e. the systems (1) and
(7), are chosen to be of minimal order, respectively. This
is equivalent to the controllability and observability of
the shift realizations (1) associated with these represen-
tations (7). It is also equivalent to the simultaneous left
coprimeness of Ti(z), Ui(z) and the right coprimeness of
Ti(z), Vi(z). Proceeding as above, define polynomial ma-
trices

T (z) = diag (T1(z), . . . , TN (z)) ∈ R[z]r×r (11)

and similarly for V (z) and U(z). Here r =
∑N
i=1 ri. Us-

ing this notation, we write all N systems of (7) in the
matrix form as(

0

I

)
w(t) =

(
T (σ) −U(σ)

V (σ) 0

)(
ξ(t)

v(t)

)
, (12)

where w(t) =
(
w1(t)> w2(t)> . . . wN (t)>

)>
and sim-

ilarly for ξ(t) and v(t). Then we have the left- and right
coprime factorizations of the p ×m node transfer func-
tion as

G(z) = C(zI −A)−1B = V (z)T (z)−1U(z).

The interconnections are given, as before, by

v(t) = Lw(t) +Ru(t)

y(t) = Sw(t) +Du(t).

The resulting network representation then becomes(
0

I

)
y(t) =

(
T (σ)− U(σ)LV (σ) −U(σ)R

SV (σ) D

)(
ξ(t)

u(t)

)
(13)

with the p×m network transfer function defined as

Γ(z) = C(zI −A)−1B +D

= SV (z)(T (z)− U(z)LV (z))−1U(z)R+D.
(14)

2.1 Zero-dynamics Attacks

In the previous subsection, we introduced the formula-
tion for the networked systems. This subsection deals
with the notion of the zero-dynamics attacks that can be
considered as one of the motivations for studying zeros
of the networked systems.

Let us assume that the input signal u(t) is contaminated
by a false signal say ua(t) ∈ Rm. This signal might be
designed by one or more intruders to lead the system
(5) into an unsafe region. Hence, under an attack the
command signal applied to the system (5) is no more
u(t) but is ū(t) = u(t) + ua(t). It is apparent that when
ua(t) is equal to zero for all t the system is operating
in its nominal condition. We write the dynamics of the
system (5) under an attack as

x̄(t+ 1) = Ax̄(t) + Bu(t) + Bua(t)

ȳ(t) = Cx̄(t) +Du(t) +Dua(t),
(15)

where x̄(t) ∈ Rn̄, ȳ(t) ∈ Rp.

It is practical to assume that there exists an anomaly
detector, say AD(ū(t), ȳ(t)), that makes decision about
the operational status of the system (15) using the infor-
mation from ū(t) and ȳ(t). The anomaly detector deliv-
ers a residue, say γ(t) ∈ Rd. This residue may activate
the alarm system if ||γ(t)|| ≥ ε for some ε > 0.

We now exploit the superposition theorem, and write
the state and output vectors of the system (15) as x̄(t) =
x(t) + xa(t) and ȳ(t) = y(t) + ya(t) with
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xa(t+ 1) = Axa(t) + Bua(t)

ya(t) = Cxa(t) +Dua(t).
(16)

Without loss of generality, in the computation of the
vector x̄(t) we assume that xa(0) = x(0). This implies
that in calculation of x̄(t), one can consider that x(t)
only contains the component corresponding to the input
u(t) and xa(t) includes terms due to the initial condition
xa(0) = x(0) and the attack signal ua(t).

Futhermore, note that the vector ya(t) can be revealed
by a fault detection filter see e.g. [37]. Here, we naturally
assume that ||γ(t)|| := ||ya(t)||.

Definition 1 Consider the system (16) with xa(t0) = 0.
The attack sequence {ua(t0), . . . , ua(tk)} with ua(ti) 6= 0
is said to be undetectable if ya(t) = 0, ∀t > t0.

The undetectable attacks have the form [21]

ua(t) = ua(0)zt0,

where z0 ∈ C is a zero of the networked system defined
by the quadruple {A,B,C, D} and ua(0) 6= 0.

It is easy to see that for a value z0 ∈ C that is not a
pole of Γ(z) and appropriate initial conditions, ya(t) =
Γ(z0)ua(0)zt0 = 0 ∀t if z0 is a zero of Γ(z) [21]. Thus,
the nonzero attack signal ua(t) defined above remains
undetectable if z0 is a zero of Γ(z). It is worthwhile not-
ing that here we exclude zeros at the origin as they are
associated with attack signals with zero energy.

As just shown, the undetectable attacks are very closely
related to zeros 2 of the networked system (5). Thus,
in the subsequent parts of this paper, we will provide a
detailed study about zeros of the system (5). First, the
next subsection formally defines zeros for the system (5).

2.2 Zeros of Networked Systems

We first state the following general definition.

Definition 2 Consider the proper transfer function ma-
trix Ḡ(z) = W̄ (z) + V̄ (z)T̄ (z)−1Ū(z) where T̄ (z) ∈
R[z]r̃×r̃, W̄ (z), V̄ (z), Ū(z) are polynomial matrices in a
minimal Rosenbruck-type realization of Ḡ(z).

A finite zero of the polynomial system matrix

Π̄(z) =

(
T̄ (z) −Ū(z)

V̄ (z) W̄ (z)

)
(17)

2

This is why this set of attacks are known as zero-dynamics
attacks.

is any complex number z0 ∈ C such that

rank Π̄(z0) < grk Π̄(z)

holds. Π̄(z) is said to have a zero at infinity if

r̃ + rank lim
z→∞

Ḡ(z) < grk Π̄(z).

We now introduce the following definition that is an im-
mediate consequence of Definition 2 and standard in sys-
tems and control literature [22].

Definition 3 Consider the proper transfer function ma-
trix Ḡ(z) with minimal realization {Ā, B̄, C̄, D̄} and Ā ∈
Rñ×ñ. Then Then, finite zeros of Ḡ(z) = D̄ + C̄(zI −
Ā)−1B̄ are defined to be the finite values of z for which
the rank of the following system matrix falls below its
normal rank

Σ̄(z) =

[
zI − Ā −B̄
C̄ D̄

]
.

Further, Ḡ(z) is said to have an infinite zero when ñ +
rank D̄ is less than the normal rank of Σ̄(z), or equiva-
lently the rank of D̄ is less than the normal rank of Ḡ(z).

Note that the normal rank grk Ḡ(z) of a rational ma-
trix function Ḡ(z) is defined as

grk Ḡ(z) = max{rank Ḡ(z) | z ∈ C, Ḡ(z) 6=∞}.

The zeros defined in the above definition capture a class
of zeros known as invariant zeros in the literature. The
following remark comments on different existing notions
of zeros studied in the systems and control literature.

Remark 1 Those zeros defined through the system ma-
trix are referred to as invariant zeros in the literature
[31]. There also exists the notion of transmission ze-
ros which are obtainable from the Smith-McMillan form
of a transfer function matrix. It is worthwhile noting that
when a realization is minimal, invariant zeros and trans-
mission zeros coincide. However, when it is not minimal
the invariant zeros include the transmission zeros. Fur-
thermore, all unreachable and unobservable modes known
as input decoupling zeros and output decoupling ze-
ros comprise the remaining zeros.

Additionally, we assert the following lemma from [13]
that helps us to relate zeros of Π̄(z) and Σ̄(z).

Lemma 1 Let Ḡ(z) = W̄ (z) + V̄ (z)T̄ (z)−1Ū(z) = D̄+
C̄(zI − Ā)−1B̄ be left and right coprime factorizations
of the proper transfer function Ḡ(z), respectively. For
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each q̃ ≥ max(ñ, r̃) there exist unimodular polynomial
matrices E(z), F (z) such that

E(z)


Iq̃−ñ 0 0

0 zI − Ā −B̄
0 C̄ D̄

F (z) =


Iq̃−r̃ 0 0

0 T̄ (z) −Ū(z)

0 V̄ (z) W̄ (z)

 .

From the results of Lemma 1, we express the following
corollary.

Corollary 1 Consider the interconnection L.R, S,D
associated with the system (5). Then the polynomial
system matrix

Π(z) =

(
T (z)− U(z)LV (z) −U(z)R

SV (z) D

)
(18)

has a finite or infinite zero if and only if the system matrix

Σ(z) =

(
zI −A −B

C D

)
of the associated shift realization (A,B,C, D) has a finite
or infinite zero.

This leads to a complete characterization of the zeros
for the interconnected system (5) as explained in the
subsequent theorem. We emphasize that the character-
ization of the zeros in the subsequent Theorem 1 holds
for any interconnection matrices and does not require
any assumptions on reachability or observability of the
network, except of those for the individual node systems.

Theorem 1 ([13]) Consider the strictly proper node
transfer function G(z) with minimal representations (4)
as

G(z) = C(zI −A)−1B = V (z)T (z)−1U(z).

Let L,R, S,D be any arbitrary constant interconnection
matrices of the proper dimensions and let Γ(z) as defined
in (14) denote the orresponding network transfer func-
tion. Assume that G(z) is represented by a polynomial
left coprime matrix fraction description (MFD) as

G(z) = D−1
L (z)NL(z).

Then

(1) For all z ∈ C

rank

(
zI −A −B

C D

)

= n− r + rank

(
T (z)− U(z)LV (z) −U(z)R

SV (z) D

)
.

(2) For all z ∈ C

rank

(
zI −A−BLC −BR

SC D

)

= n− p+ rank

(
DL(z)−NL(z)L −NL(z)R

S D

)
.

(3) (A,B,C, D) has a finite zero at z0 ∈ C if and only if

rank

(
T (z0)− U(z0)LV (z0) −U(z0)R

SV (z0) D

)
<

r + grk Γ(z).

(4) (A+BLC,BR, SC,D) has a zero at infinity if and
only if

rank D < grk Γ(z).

In particular, if D has full-row rank or full-column
rank, then (A + BLC,BR, SC,D) has no infinite
zero.

3 Zeros of Homogeneous Networks

The preceding result has a nice simplification in the
case of homogeneous networks of SISO agents, i.e.
where the node systems (Ai, Bi, Ci) are single input sin-
gle output systems with identical transfer function. Let
us define the interconnection transfer function as

φ(z) = S(zI − L)−1R+D.

The next theorem relates the zeros of the system (5)
to those of the interconnection dynamics 3 defined by
the quadruple (L,R, S,D). Before we provide this main
result, we need to state the following lemma regarding
the generic rank of Γ(z).

3 The term interconnection dynamics is partly a misnomer.
There is no dynamics separate to that included within the
agent description, and the interconnecting matrices are all
constant. The transfer function φ(z) is a theoretical con-
struct: it is the transfer function from u(t) to y(t) resulting
when every system is replaced by z−1.
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Lemma 2 Assume that (Ai, bi, ci) are scalar SISO sys-
tems with identical transfer function g(z) = ci(zI −
Ai)
−1bi. Let L,R, S,D denote any constant intercon-

nection matrices of the proper dimensions and φ(z) =
S(zI −L)−1R+D be the interconnection transfer func-
tion. Then with Γ(z) as defined in (14), the following
equality holds.

grk Γ(z) = grk φ(z).

Proof. Consider any coprime factorization g(z) = p(z)
q(z)

of the strictly proper transfer function g(z), having

McMillan degree n. Define h(z) = g(z)−1 = q(z)
p(z) . First

observe that(
zI −A −B

C D

)
=

(
I 0

C(zI −A)−1 I

)(
zI −A −B

0 Γ(z)

)
.

Then we can easily write

grk Γ(z) = grk

(
zI −A −B

C D

)
− nN. (19)

Then by applying the second part of Theorem 1, one
obtains

grk

(
zI −A −B

C D

)
=

N(n− 1) + grk

(
q(z)IN − p(z)L −p(z)R

S D

)
=

N(n− 1) + grk

(
h(z)IN − L −R

S D

)
=

N(n− 1) + grk

(
ηIN − L −R

S D

)
=

Nn+ grk φ(z).

(20)

By substituting the last equality of (20) into (19), the
result follows.

�

Theorem 2 Assume that (Ai, bi, ci) are SISO sys-
tems with identical transfer function g(z) = ci(zI −
Ai)
−1bi.Then (A,B,C, D) has a zero at infinity if and

only if (L,R, S,D) has a zero at infinity.

Proof. By Lemma 2, the network transfer function ma-
trix Γ(z) and the interconnection transfer matrix φ(z)

have the same normal rank. Using the conclusion of The-
orem 1 (part 4), the result follows. �

Theorem 2 shows that the infinite zero structure of a
homogeneous network depends only upon the intercon-
nection parameters and not on the specific details of the
node transfer function. This is in contrast to the finite
zero structure, as is shown by the following result.

Theorem 3 Assume that (Ai, bi, ci) are SISO systems
with identical transfer function g(z) = ci(zI − Ai)−1bi.
Let p(z)/q(z) be a coprime polynomial factorization of
g(z) and define h(z) = g(z)−1. Let (L,R, S,D) denote
any constant interconnection matrices of the proper di-
mensions.

(1) (A,B,C, D) has a finite zero at z0 ∈ C with
p(z0) 6= 0 if and only if h(z0) ∈ C is a finite zero of
(L,R, S,D).

(2) (A,B,C, D) has a finite zero at z0 ∈ C with p(z0) =
0 if and only if (L,R, S,D) has a zero at infinity.

Proof. We first prove the first part of the theorem. By
Lemma 2 and Theorem 1, z0 ∈ C is a zero of (A,B,C, D)
if and only if

rank

(
q(z0)IN − p(z0)L −p(z0)R

S D

)
< N + grk φ(z).

(21)
For p(z0) 6= 0 this is equivalent to

rank

(
h(z0)IN − L −R

S D

)
< N + grk φ(z),

i.e. h(z0) being a finite zero of (L,R, S,D). For the sec-
ond part note that z0 ∈ C is a zero of (A,B,C, D) if
and only if inequality (21) holds. If p(z0) = 0, then by
coprimeness of p(z) and q(z) we have q(z0) 6= 0 and
therefore (21) is equivalent to

N + rankD = rank

(
q(z0)IN 0

S D

)
< N + grk φ(z).

This is equivalent to rank D < grk φ(z). Thus a zero of
the node transfer function g(z) is a zero of (A,B,C, D)
if and only if (L,R, S,D) has a zero at infinity. This
completes the proof. �

Now assume that D has full-column rank or full-
row rank. Then the homogeneous network realization
(A,B,C, D) has no zeros at infinity. Thus in this case
the finite zeros of (A,B,C, D) are exactly the preimages
of the finite zeros of (L,R, S,D) under the rational func-
tion h(z). We conclude with a result that is useful for
the design of networks with prescribed zero properties.
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The result below bears a certain similarity with a result
by Fax and Murray[11]. As shown by them, a formation
of N identical vehicles can be analyzed for stability by
analyzing a single vehicle with the same dynamics mod-
ified by only a scalar, which assumes values equal to the
eigenvalues of the interconnection matrix. Such a result
is to do with poles, linking those of the individual agent
and the overall system via the eigenvalues (which are
pole-like) of the interconnection matrix. Our result is
to do with the zeros, but still links those of the individ-
ual agent, those of the interconnection matrix (suitably
interpreted) and those of the whole system.

With the help of the preceding results, we can now
study two other important properties of networks,
namely, losslessness and passivity. It is well known, see
e.g. [40] (Section II. B), that if all agent transfer func-
tion matrices and the system defined by the quadruple
(L,R, S,D) are lossless, then the system (5) is lossless.
We now provide an improvement of this result for the
case of SISO agents.

Recall that a strictly proper real rational transfer func-
tion g(z) is called lossless [39] if all poles of g(z) are in
the open unit disc and |g(z)| = 1 holds for all |z| = 1. A
key property used below is that |g(z)| > 1 if |z| < 1 and
|g(z)| < 1 if |z| > 1.

Theorem 4 Assume thatD has full-column rank or full-
row rank. Then

(1) The homogeneous network (A,B,C, D) has no ze-
ros at infinity. A complex number z0 is a finite zero
of (A,B,C, D) if and only if h(z0) 6= ∞ is a finite
zero of (L,R, S,D).

(2) Assume that the agent transfer function g(z) is loss-
less. Then (A,B,C, D) is a minimum phase net-
work, i.e. all of its zeros have absolute value < 1, if
and only if (L,R, S,D) is minimum phase.

Proof. The first claim is an immediate consequence of
Theorem 3. If g(z) is lossless then |g(z)| < 1 holds if and
and only if |z| > 1. Thus h(z) = 1/g(z) maps the com-
plement of the open unit disc onto itself. Thus |z| ≥ 1
if and only if |h(z)| ≥ 1. Therefore (L,R, S,D) has a
finite zero η0 with |η0| ≥ 1 if and only if each z with
h(z) = η0 satisfies |z| ≥ 1 and is a zero of (A,B,C, D).
Note that for any finite η0, there is necessarily a z satis-
fying h(z) = η0, since this is a polynomial equation for
z. This proves the result. �

We now extend the second part of the above corollary
for the choice of passive transfer functions [39]. Let us
recall that g(z) is passive if and only if

(1) all poles of g(z) are in |z| ≤ 1
(2) |g(z)| ≤ 1 ∀ |z| = 1.

This implies

(1) |g(z)| < 1 ∀ |z| > 1
(2) If |g(z)| > 1, then |z| < 1.

Corollary 2 Assume that D has full-column rank or
full-row rank and g(z) is passive. Then (A,B,C, D) is
a minimum phase network, i.e. all of its zeros have ab-
solute value < 1, if (L,R, S,D) is minimum phase.

Proof. Suppose |z0| is a finite zero of {A,B,C,D}. Then
h(z0) is a finite zero of (L, S,R,D), i.e., 1/g(z0) is a finite
zero of (L, S,R,D). By the minimum phase assumption,
|1/g(z0)| < 1 or |g(z0)| > 1. Passivity of g(z0) thus
implies |z0| < 1. �

It is worthwhile that passive and loss-less transfer func-
tions can be considered as classes of inner functions that
is discussed in the literature [32].

At this stage, we comment on the position of zeros with
respect to the unit circle. Suppose that z0 is a zero of
the system (5). Then it is said to be a minimum phase
zero if |z0| < 1 and non-minimum phase zero if |z0| ≥ 1.

We make the following observation that is inspired by
Theorem 7 in [38].

Suppose that the state matrix A is Schur stable [20].
Then even though those attacks that exploit minimum
phase zeros remain undetectable, they give rise to states
that asymptotically converge to the origin. On the other
hand, those attacks associated with non-minimum phase
zeros are undetectable and the states corresponding to
such attack signals are unbounded as t→∞.

3.1 Design of Networks

In this subsection, we study construction of networks
that exhibits no finite zeros. We derive a simple suf-
ficient condition for homogeneous networks. By Theo-
rem 4, the homogeneous network (A,B,C, D) is zero-
free if and only if (L,R, S,D) is zero-free. For simplicity,
we assume that there is a single external input and a
single external output associated with the network, i.e.
m = p = 1. Moreover, we assume D = 0. Thus the in-
terconnection transfer function φ(z) = S(zIN − L)−1R
is scalar strictly proper rational. The next result charac-
terizes which outputs of the SISO interconnected system
lead to a network without finite zeros, for given state
and input interconnection matrices.

Theorem 5 (SISO Design Condition) Assume that
(Ai, bi, ci) are identical minimal SISO systems with iden-
tical transfer functions. Let (L,R) be reachable with L ∈
RN×N , R ∈ RN . Then a network output S ∈ R1×N de-
fines a minimal network realization (A,B,C, 0) without
finite zeros if and only if S(zIN − L)−1R has relative
degree N .
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Fig. 1. A homogenous network consisting of three SISO
agents. The agents, the external input and measurement are
depicted by green, blue and red circles, accordingly. The whole
network has two zeros at -1 and 1 when all weights are set to
unity.

u y

1
A

2
A

3
A

Fig. 2. A homogenous network consisting of three SISO
agents. The agents, the external input and measurement are
depicted by green, blue and red circles, accordingly. The whole
network is zero-free when all weights are set to unity.

Proof. By Theorem 4, the homogeneous network
(A,B,C, 0) has no finite zeros if and only if this holds
for (L,R, S, 0). In the SISO case this is equivalent to the
transfer function S(zIN − L)−1R having no zeros. By
[13], (A,B,C, 0) is minimal if and only if (L,R, S) is
minimal. In either case, S(zIN − L)−1R has McMillan
degree N and has no zeros if and only if the relative
degree of S(zIN − L)−1R is equal to N . �

The above theorem characterizes when the SISO net-
worked systems are zero-free. We note that the condition
is equivalent to the sytem-theoretic condition that the
closed loop system (A,B,C, 0) is feedback irreducible;
i.e. that (A+BK,C) is observable for all state feedback
matrices K.

The next example illustrates that the zeros of the system
(5) may drastically change by replacing and adding a
link.

Example 1 Consider the network depicted in Fig. 1
where the nodes are simply double integrators. Note that
there exist bidirectional links between the agents. By as-
suming a unit weight on each link, it is easy to verify
that for such a network the interconnection matrices are

L =


1 1 0

1 0 1

0 1 1

 , R =


1

0

0

 and S =
(

0 1 0
)

. More-

over, the interconnection dynamics has a single zero at
z = 1. Hence, by using Theorem 3 it is easy to see that
the whole network has two zeros at 1 and −1. One can
also observe that by adding an extra link in Fig. 1 from
agent A3 to the measurement node, with the same set
of interconnection matrices as before except for S which
assumes random values in its nonzero entry, the whole

network becomes zero-free. The same result holds i.e. the
resultant network is zero-free, when the topology is mod-
ified according to Fig. 2.

3.2 Circulant Homogeneous Networks

Homogeneous networks with special coupling structures
appear in many applications, such as cyclic pursuit [24];
shortening flows in image processing [5] or the discretiza-
tion of partial differential equations [4]. Here, we char-
acterize the zeros for interconnections that have a circu-
lant structure. A homogeneous network is called circu-
lant if the state-to-state coupling matrix L is a circulant
matrix, i.e.

L = Circ(c0, ..., cN−1)

=



c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 · · · cN−2

...
. . .

. . .
. . .

...

c2 · · · cN−1 c0 c1

c1 c2 · · · cN−1 c0


.

The book [9] provides algebraic background on the circu-
lant matrices. A basic fact on circulant matrices is that
they are simultaneously diagonalizable by the Fourier
matrix

Φ =
1√
N



1 1 1 . . . 1

1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2N−2

...

1 ωN−1 ω2N−2 . . . ω(N−1)2


,

where ω = e2πj/N denotes a primitive N−th root of
unity. Note, that Φ is both a unitary and a symmetric
matrix. It is then easily seen that any circulant matrix L
has the formL = Φdiag (pL(1), pL(ω), . . . , pL(ωN−1))Φ∗,

where pL(z) :=
∑N−1
k=0 ckz

k−1. As a consequence of the
preceding analysis we obtain the following result.

Theorem 6 Suppose that the system in (5) is a cir-
culant homogeneous network. Let D be full rank and
M = diag (pL(1), . . . , pL(ωN−1)) andw1, . . . , wN denote
the complex roots of

det

(
wIN −M −Φ∗R

SΦ D

)
= 0.

Then
N⋃
k=1

{z ∈ C | q(z)− wkp(z) = 0}
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are the finite zeros of the homogeneous network
(A,B,C, D).

Proof. By Theorem 3, we conclude that the system de-
fined by (A,B,C, D) has a finite nonzero zero if and
only if the following matrix pencil has less than full rank(

h(z)IN − L −R
S D

)
. (22)

Observe that the following equality holds(
h(z)IN −M −Φ∗R

SΦ D

)
=

(
Φ∗ 0

0 I

)(
h(z)IN − L −R

S D

)(
Φ 0

0 I

)
.

(23)

Note that multiplication of a matrix by non-singular ma-
trices on the left and right respectively does not change
the rank. This implies the result. �

4 Zeros of Blocked Networked Systems

The technique of blocking or lifting a signal is well-known
in systems and control [7] and signal processing [39]. In
systems theory, this method has been mostly exploited
to transform linear discrete-time periodic systems into
linear time-invariant systems in order to apply the well-
developed tools for linear time-invariant systems; see [2]
and the literature therein. As we mentioned in the intro-
duction section, the blocking technique has been used in
the networked systems literature for both identification
and control purposes see e.g. [19], [14]. Here, we demon-
strate how blocking can be applied to the networked sys-
tem (5). Furthermore, we show how the system matrix
and zeros of the resultant blocked system relate to the
those of the corresponding unblocked system.

Let us consider the following networked system

x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t),
(24)

with matrices

A := A+BLC B := BR, C := SC.

and the network transfer function

Γ(z) = D + SC(zI −A−BLC)−1BR.

Here x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Rm and
A = diag (A1, . . . , AN ), B = diag (B1, . . . , BN ), C =

diag (C1, . . . , CN ) are block-diagonal. Given an integer
T ≥ 1 as the block size, we define for t = 0, T, 2T, . . .

U(t) =
(
u(t)

>
u(t+ 1)

>
. . . u(t+ T − 1)

>
)>

,

Y (t) =
(
y(t)

>
y(t+ 1)

>
. . . y(t+ T − 1)

>
)>

.

The blocked system then is defined as [2]

x(t+ T ) = Abx(t) + BbU(t)

Y (t) = Cbx(t) + DbU(t),
(25)

where

Ab = AT , Bb =
(

AT−1B AT−2B . . . B
)
,

Cb =
(

C> A>C> . . . A(T−1)>C>
)>

,

Db =


D 0 . . . 0

CB D . . . 0
...

...
. . .

...

CAT−2B CAT−3B . . . D

 . (26)

The transfer function Γb(z
T ) = Db+Cb(z

T I−Ab)
−1Bb

of (24), see [2], [23], has the circulant-like structure as



H0(z) HT−1(z) . . . H2(z) H1(z)

zH1(z) H0(z) HT−1(z) . . . H2(z)

...
. . .

. . .
. . .

...

zHT−2(z) . . . zH1(z) H0(z) HT−1(z)

zHT−1(z) zHT−2(z) . . . zH1(z) H0(z)


,

whereH0(z) = D+C(zI−AT )−1AT−1B andHk(z) =
C(zI−AT )−1Ak−1B, k = 1, . . . , T −1. It is worthwhile
mentioning that the blocked transfer function has the
structure of a generalized circulant matrix. The theory
of generalized circulant matrices is very similar to that
of classical circulant matrices; see [9]. Using such tech-
niques we obtain the following result.

In order to deal with the zeros of the system (25), we first
need to review the following result from [41], obtained by
specializing Lemma 1 of [41] to the time-invariant case.

Lemma 3 [41] Let Ãb = IT ⊗A, B̃b = IT ⊗B, C̃b =

IT ⊗ C and D̃b = IT ⊗ D. Furthermore, define Eζ ,
0 1 0

0
. . .

...
. . . 1

ζ 0 0

, Eζ ∈ CT×T and Ẽζ = Eζ ⊗ In̄ where ⊗
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denotes the Kronecker product and ζ denotes a complex
number. Then there exist invertible matrices Tl and Tr
and matrices X and Y such that for all ζ ∈ C

In̄(T−1) 0 0

0 ζI −Ab −Bb

0 Cb Db

 =

(
Tl 0

X I

)(
Ẽζ − Ãb −B̃b

C̃b D̃b

)(
Tr Y

0 I

)
.

(27)

Using this lemma we introduce the following result.

Proposition 1 Let Φ denote the Fourier matrix of the
proper dimension and Γ(z) = Q(z)−1P (z) be a left co-
prime factorization of the network transfer function.
Consider the system matrices

Σb(z) =

(
zIn −Ab −Bb

Cb Db

)
,

Σ̂b(z) =

(
In(T−1) 0

0 Σb(z)

)
.

There exist invertible matrices L(z) and R(z) that are
invertible for all nonzero complex numbers z ∈ C such
that

Σ̂b(z
T ) =

L(z)



zIn −A −B

C D

 0

. . .

0

ωT−1zIn −A −B

C D




R(z).

(28)

Proof. First, observe that the following equality holds

E1 = Φ


1

ω

. . .

ωT−1

Φ∗, (29)

where Φ is the Fourier matrix of the proper dimension.
Furthermore, we have

Eζ = z∆(z)E1∆(z)−1. (30)

where ∆(z) =


1

z

. . .

zT−1

.

Now by using (30) and (29), one can easily verify that
the following equality holds

Ẽζ =(∆(z)Φ)⊗ In̄


zIn̄

ωzIn̄
. . .

ωT−1zIn̄


(∆(z)Φ)−1 ⊗ In̄.

(31)

Therefore, for any ζ 6= 0, zT = ζ, we have T̃ (z) ,
∆(z)Φ⊗In̄, R̃(z) , ∆(z)Φ⊗Im and L̃(z) , ∆(z)Φ⊗Ip.
Hence,

(
Ẽζ − Ãb −B̃b

C̃b D̃b

)
=

 T̃ (z) 0

0 L̃(z)





zI −A 0

. . .

0 ωT−1zI −A



B 0

. . .

0 B




C 0

. . .

0 C



D 0

. . .

0 D




 T̃−1(z) 0

0 R̃−1(z)

 .

(32)

Now by substituting (32) into the equation (27) and per-
forming the required rows and columns reordering, the
conclusion of the proposition becomes immediate.

�

The preceding results imply the following characteriza-
tion of the finite zeros for the interconnected systems.
Thus consider the interconnected system (A,B,C, D)
defined in (5). Let (Ab,Bb,Cb, Db) denote the associ-
ated blocked system, defined as in (25) and (26).
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Theorem 7 A complex number ζ0 6= 0 is a finite zero of
the blocked network (Ab,Bb,Cb, Db) if and only if there
exists z0 ∈ C with zT0 = ζ0 such that z0 is a finite zero of
(A,B,C, D).

Proof. Necessity. Suppose that ζ0 = zT0 is a zero of
the system matrix Σb(ζ), then by recalling the result
of Proposition 1, one can easily see that one or more
of diagonal blocks in (28) should have rank below their
normal rank i.e. there exist at least one T -th root of ζ0
which is a zero of the unblocked system.
Sufficiency. Suppose that z0 is a zero of the unblocked
system (24). Then at least one of the diagonal blocks
in (28) loses rank below its normal rank. Now, again by
using (28), one can conclude that ζ0 = zT0 is a zero of

Σ̂b(z). The latter implies that ζ0 must be a zero of the
system (25).

�

The above theorem only treats the finite nonzero zeros.
To treat the other cases i.e. zeros at the origin and in-
finity, we recall the following result from [42].

Proposition 2 Consider the unblocked networked sys-
tem (24) with transfer function Γ(z) and the blocked net-
worked system (25) with transfer function Γb(ζ). Suppose
that the quadruple (A,B,C, D) is minimal. Then

(1) The system (24) has a zero at z =∞ if and only if
the system (25) has a zero at ζ =∞.

(2) The system (24) has a zero at the origin if and only
if the the system (25) has a zero at the origin.

This implies the next characterization of the zeros for
the systems (24) and (25).

Theorem 8 Let D be full rank and (A,B,C, D) a ho-
mogeneous network with SISO agents. Then the blocked
network (Ab,Bb,Cb, Db) has no zeros at infinity. The
finite zeros of (Ab,Bb,Cb, Db) are exactly all ζ = zT

such that h(ωkz) is a finite zero of (L,R, S,D) for some
0 ≤ k ≤ T − 1.

Proof. The proof readily follows from Proposition 2 and
the first part of Theorem 4. �

5 Conclusions

In this paper, we explored the zeros of networks of linear
systems. It was assumed that the interaction topology
is time-invariant. The zeros were characterized for both
homogeneous and heterogeneous networks. In particu-
lar, it was shown that for homogeneous networks with
full rank direct feedthrough matrix, the finite zeros of
the whole network are exactly the preimages of inter-
connection dynamics zeros under the inverse of an agent

transfer function. We then discussed the condition un-
der which the networked systems have no finite nonzero
zeros. Then generalized circulant matrices were used for
a concise analysis of the finite nonzero zeros of blocked
networked systems. Moreover, we recalled some results
about their zeros at infinity and at the origin. It was
shown that the networked systems have zeros at the ori-
gin (infinity) if and only if their associated blocked sys-
tems have zeros at the origin (infinity). As a part of our
future work we will address open problems such as the
consideration of periodically varying network topologies
and MIMO dynamics for each agents. Furthermore, as
explained in the illustrative example given in the cur-
rent paper, adding and removing links can dramatically
change the zero structure. Thus, another interesting re-
search direction involves exploring how links in the net-
worked systems can be systematically designed such that
the resultant networked systems attain a particular zero
dynamics. Moreover, the issues involved with robustness
property of zero-dynamics attacks remain still open. We
also believe that zero-dynamics attacks require further
investigations especially when there exist some noise
components involved with the input signal. It is also an
interesting research question to study how zeros posi-
tions with respect to a unit circle affect an attack policy.
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